Examining the nature of variability in gender and number agreement in native and nonnative Spanish
Beatriz Lopez Prego and Alison Gabriele
University of Kansas
contact: lopezb@ku.edu

We investigate the acquisition of gender and number agreement by English-speaking learners of Spanish in order to examine the nature of variability in learners’ comprehension of agreement morphology. Previous studies in L2 Spanish have observed morphological variability even at high proficiency levels and have reported that the errors follow a systematic pattern (McCarthy, 2008). Specifically, masculine and singular agreement morphemes are incorrectly extended to contexts that require feminine or plural agreement (ex. 1b, 2c). These errors are argued to reflect the suppliance of ‘default’ morphology (McCarthy, 2008; White et al., 2004). McCarthy (2008) proposed that the opposite pattern, which she defined as ‘feature-clash’ errors (ex. 3b, 3c), is less frequent in L2 learners, and presumably easier for learners to detect as ungrammatical.

Some researchers argue that the source of these errors is a deficient L2 grammar (Franceschina, 2002; McCarthy, 2008), while others propose that the deficiency is computational (McDonald, 2006; Hopp, 2010; White et al., 2004). In support of the second account, Hopp (2010) found that native speakers behaved similarly to L2 learners when they performed grammaticality judgments under an increased processing burden, suggesting that variability in learners may be caused by processing being more taxing in the L2.

Following Hopp (2010) we manipulated the conditions under which participants were asked to judge sentences targeting agreement. Three separate groups of Spanish natives took a speeded grammaticality judgement task in which sentences were presented word by word at three different presentation rates (Table 1). L2 learners took either a speeded grammaticality judgment task (Speed 1) or an untimed GJ task that included the same sentences.

Table 1. Tasks and Participants

<table>
<thead>
<tr>
<th>Tasks & Groups</th>
<th>Speeded GJ Task</th>
<th>Untimed GJ Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natives</td>
<td>Speed 1 (155ms/word +17ms/character)</td>
<td>n=12</td>
</tr>
<tr>
<td>L2 Low</td>
<td>Speed 2 (71ms/word +17ms/character)</td>
<td>n=16</td>
</tr>
<tr>
<td>L2 Int.</td>
<td>Speed 3 (37ms/word +17ms/character)</td>
<td>n=16</td>
</tr>
<tr>
<td>L2 Adv.</td>
<td>Untimed GJ Task</td>
<td>n=15</td>
</tr>
</tbody>
</table>

The tasks included 108 experimental sentences manipulating agreement between a noun and a predicative adjective (ex.1-4); 108 fillers were also included.

(1) Julio dijo que vio una tela que era a) fina (gram.) b)*fino (gen. default sg.) c)*finas (num. clash fem.)
Julio said that he saw a fabric that was…fine, *fine_ms, *fine_fp

(2) …unas telas que eran a) finas_fp (gram.) b)*finos_mp (gen. default pl.) c)*finas_mp (num. default fem.)

(3) Juan…vio un colegio que era a) antiguo (gram.) b)*antigua (gen. clash sg.) c)*antiguos (num. clash m.)
Juan…he saw a school that was old_ms, *old_ms, *old_mp

(4) unos colegios que eran a) antiguos_mp (gram.) b)*antiguas_fp (gen.class pl.) c)*antiguo_ms (num. default m.)
This methodology allowed us to investigate the quantitative and qualitative effects of speed on native speakers’ and L2 learners’ sensitivity to default versus feature-clash errors, and examine similarities between the groups. Preliminary results show quantitative effects of speed for both groups. Natives were significantly less sensitive to errors as speed increased (Fig. 1/3). For the learners, all proficiency levels showed increased sensitivity in the untimed task, with individuals in the advanced group showing target-like performance. As for the qualitative nature of the errors, differences between ‘default’ and ‘feature-clash’ errors emerged for the natives in Speed 2 and the intermediate L2 group in Speed 1. For number, in both groups, participants were more sensitive to feature-clash (1c & 3c) than default (2c & 4c) errors. In contrast, for gender, both groups were more sensitive to default (1b & 2b) than feature-clash (3b & 4b) errors. The qualitative and quantitative similarity that emerges in both groups is more consistent with a computational account of variability.

REFERENCES